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This paper examines the critical merger or strong interaction distance between two
equal-potential-vorticity quasi-geostrophic vortices. The interaction between the two
vortices depends on five parameters: their volume ratio, their height-to-width aspect
ratios and their vertical and horizontal offsets. Due to the size of the parameter space,
a direct investigation solving the full quasi-geostrophic equations is impossible. We
instead determine the critical merger distance approximately using an asymptotic
approach. We associate the merger distance with the margin of stability for a family
of equilibrium states having prescribed aspect and volume ratios, and vertical offset.
The equilibrium states are obtained using an asymptotic solution method which
models vortices by ellipsoids. The margin itself is determined by a linear stability
analysis. We focus on the interaction between oblate to moderately prolate vortices,
the shapes most commonly found in turbulence. Here, a new unexpected instability is
found and discussed for prolate vortices which is manifested by the tilting of vortices
toward each other. It implies than tall vortices may merge starting from greater
separation distances than previously thought.

1. Introduction
Vortical structures abound in the Earth’s atmosphere and oceans. Vortices – or

coherent volumes of anomalous potential vorticity (PV) – are known to play an
important dynamical role in these environments, cf. Holton et al. (1995), and Garrett
(2000). Their behaviour is strongly influenced by both stratification and the Earth’s
rotation, and is fundamentally distinct from the motion of higher-frequency inertia–
gravity waves. Vortices belong to the dominant, ‘balanced’ class of fluid motions that
depends only on the PV distribution, cf. Hoskins, McIntyre & Robertson (1985).

Vortices induce fluid motion and sometimes strongly interact as in ‘merger’.
However, other forms of strong interaction are frequently observed, such as partial
merger, in which part or parts of the smaller vortex do not merge with the larger
vortex, cf. Dritschel (2002). Hereinafter, ‘merger’ will refer to any form of strong
interaction which results in a significant change in volume of one of the vortices.

Vortex merger has been extensively studied in the two-dimensional context, for it
provides a scenario to explain physically the average ‘inverse energy cascade’ and
the ‘direct enstrophy cascade’ observed in two-dimensional turbulence. Energy is said
to move to larger scales as a result of the formation of a few larger vortices, while
low-energy small vortices and filaments generated during the merger process feed the
small scales of the enstrophy spectrum.

Studies of two-dimensional vortex merger have been conducted using both direct
numerical simulation (e.g. see Waugh 1992 and references therein), and linear stability
analyses, see Dritschel (1995) and Meunier et al. (2002). In linear stability analyses,
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the critical distance for vortex merger is associated with the margin of stability for
two vortices in mutual equilibrium. The ‘exchange-type’ instability observed in these
studies has been shown to coincide with local extrema in both the angular impulse
and the ‘excess’ energy of the flow as a function of the separation distance between
the vortices, see Dritschel (1995) for uniform-PV vortices and Meunier et al. (2002) for
distributed vortices. A theoretical justification, based on Kelvin’s variational principle
is proposed in Saffman (1992).

Direct enstrophy and inverse energy cascades are also observed in three-dimensional
quasi-geostrophic turbulence, see Hua & Haidvogel (1986). The quasi-geostrophic
(QG) model is the simplest model containing the dominant features of stable
stratification and background rotation found in the oceans and the atmosphere. The
quasi-geostrophic approximation gives a single dynamical equation for the evolution
of the PV anomaly (hereinafter referred to as PV, for simplicity). The anomaly
represents the departure of the full PV field from the background PV distribution
associated with the Earth’s rotation. While the PV distribution is fundamentally three-
dimensional, the motion is constrained to remain parallel to stratification surfaces,
and this gives rise to a layer-wise two-dimensional flow. Moreover, in the absence of
dissipative and diabatic effects, the PV is a Lagrangian invariant. That is, the PV is
conserved following each fluid element.

Recently, vortex merger in quasi-geostrophic flows has been studied by von
Hardenberg et al. (2000), Dritschel (2002) and Reinaud & Dritschel (2002). In von
Hardenberg et al. (2000) and in Dritschel (2002), the focus was on the influence of
the vortex height-to-width aspect ratio on the merger distance between equal-volume
equal-PV (or equal-distributed-PV) horizontally aligned vortices. It was concluded in
Dritschel (2002) that the merger of tall vortices does not tend to the limiting case
of barotropic two-dimensional vortices since vortices are inclined to be destabilized
three-dimensionally – or baroclinically – by the ‘tall column instability’, analysed in
Dritschel & de la Torre Juárez (1996). On the other hand, Reinaud & Dritschel (2002)
focused on the effect of the vertical offset on the merger of unit-aspect-ratio vortices
to investigate the fundamental anisotropy of the QG equations (i.e. the lack of vertical
advection). Again, in that study the vortices had the same volume and PV. It was
found that vortices moderately offset in the vertical merge from a greater separation
distance than do vortices not offset vertically. This result can be explained by the
different roles played by horizontal strain and vertical shear – the latter appearing
to be more destructive as a consequence of the lack of vertical advection. In that
work, the margin of stability was shown to coincide with the local minimum of the
angular impulse and the maximum of the energy as a function of the horizontal ‘gap’;
the horizontal gap corresponds to the horizontal distance between the two innermost
edges of the vortices.

Nonetheless, little is known about merger in general. For instance, we do not know
how vortices of unequal volume offset in the vertical interact. Nor do we know how
vortices of different aspect ratio interact. The limited data presently available cannot
be extrapolated to understand vortex interactions in general. Our motivation is to fill
this gap in understanding and to provide a comprehensice picture.

Vortex interactions depend on five essential parameters even in the case studied
here of uniform equal PV. These parameters are the volume ratio of the two vortices,
their height-to-width aspect ratios, and their vertical and horizontal offsets. The com-
prehensive study of such a large parameter space using direct numerical simulation or
a full stability analysis as performed in Dritschel (2002) and in Reinaud & Dritschel
(2002) is simply beyond reach. One needs to make an approximation.
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The approximation used here employs the ‘quasi-geostrophic ellipsoidal vortex
model’ (ELM) introduced in Dritschel, Reinaud & McKiver (2004), which represents
vortices as PV ellipsoids and filters higher-order non-ellipsoidal deformations.
Interacting ellipsoids (especially in gravitational studies) have been studied by
numerous mathematicians starting from MacLaurin (1742) and Laplace (1784), see
the reviews by Todhunter (1873) and Chandrasekar (1969). The results have been
more recently adapted to the quasi-geostrophic fluid equations by Meacham (1992),
Meacham et al. (1994) and Meacham, Morisson & Flierl (1997) where the motion
of a PV ellipsoid in a linear background flow was considered. McKiver & Dritschel
(2003) revisited the topic, proposing a new set of prognostic variables which are used
in the ELM. Note that in an independent effort Hashimoto, Shimonishi & Miyazaki
(1999), Miyazaki, Ueno & Shimonishi (1999) and Miyazaki, Furuichi & Takahashi
(2001) proposed a ‘moment expansion ellipsoidal model’ to study the interaction
between ellipsoids. Our own dynamical approach differs from theirs. It does not rely
on second-order moment expansions, and as a result it provides higher accuracy.

The ELM greatly simplifies the QG dynamical problem since a vortex is fully
described by its centroid position and a 3×3 ‘shape’-matrix in which only six variable
coefficients are independent. More than this, among these nine degrees of freedom,
only seven are time dependent. The ELM formalism is here adapted to find families
of equilibrium states (or relative equilibria in an appropriate co-rotating frame). A
family is characterized by the vertical offset between the two vortices, their volume
ratio and their respective aspect ratios. Members of the family differ only in their
horizontal gap. We obtain the equilibria using an iterative method similar to that
developed for a single vortex in a linear background flow by Reinaud, Dritschel &
Koudella (2003). The equilibrium states are then subjected to a linear stability analysis
based on the ELM.

In the present study, we limit the investigation to oblate and moderately prolate
vortices – we do not consider vortices having an aspect ratio h/r greater than 1.6.
Here h is the half-height of the vortex and r is its mean horizontal radius. This is
motivated by the results of Reinaud et al. (2003) (in particular their figure 4) showing
that taller vortices are rare in QG turbulence. They represent only 2.5% of the entire
population of vortices.

The paper is organized as follows. Section 2 briefly reviews the QG equations and
the ELM model. Then, the numerical methods adapted from the ELM to compute
the steady states and then linear stability are described. Section 3 compares the ELM
results and results previously obtained in Reinaud & Dritschel (2002) using the full QG
equations. We go on to discuss the full parameter space, in particular the properties
of the marginally unstable equilibria, including the critical merger distance. A surprise
is found for prolate vortices, namely a new tilting instability, which is present even
for symmetric horizontally aligned vortices. This instability is linked to a symmetry-
breaking bifurcation to a branch of unstable asymmetric equilibria. Most significantly,
it is the first instability encountered when decreasing the vortex separation, and had
not been noticed in previous studies due to the imposed symmetry. Finally, our conclu-
sions are offered in § 4.

2. The quasi-geostrophic ellipsoidal model
2.1. The quasi-geostrophic equations

The inviscid quasi-geostrophic model results from an asymptotic expansion of Euler’s
equations for ε = H/L � 1, H and L being characteristic vertical and horizontal
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length scales, and for Fr2 � Ro � 1 where Fr and Ro are respectively the Froude and
Rossby numbers, see e.g. Gill (1982) for a complete discussion. Following numerous
previous studies we consider a constant buoyancy frequency, denoted N , and a
constant Coriolis frequency, denoted f .

In rescaled coordinates in which the vertical coordinate is stretched by Prandtl’s
ratio N/f , the governing equations reduce to

Dq

Dt
= 0, (2.1)

∆ψ = q, (2.2)

u = L∇ψ, (2.3)

where q(x, y, z, t) is the PV, ψ is the streamfunction, and u = (u, v) is the horizontal
velocity. In (2.1), D/Dt = ∂/∂t + u∂/∂x + v∂/∂y stands the material derivative; while
in (2.2) � is the three-dimensional Laplace operator, and finally

L =


0 −1 0

1 0 0
0 0 0


 . (2.4)

We do not consider here (generally weak) dissipative or diabatic effects. Hence, in
equation (2.1) the PV is materially conserved. Moreover, the PV is constrained to
layer-wise two-dimensional motion tangent to stratification surfaces, i.e. w = 0.

2.2. Formulation of the model

The ELM, described in detail in Dritschel et al. (2004) is a finite Hamiltonian system
for the motion and the deformation of interacting fluid ellipsoids. For the ith ellipsoid
the governing equations are

dX i

dt
= − 1

κi

L ∂H

∂X i

, (2.5)

dBi

dt
= SiBi + BiST

i , (2.6)

Si = −10

κi

L ∂H

∂Bi

, (2.7)

where X i = (Xi, Yi, Zi) is the centroid position, and Bi denotes the 3 × 3 sym-
metric matrix in terms of which the boundary of the ellipsoid is expressed by
(x − X i)

T B−1
i (x − X i) = 1. Also, κi is the ‘strength’ of vortex i, i.e. the volume integral

of PV divided by 4π (denoting Vi the volume of the ith vortex, we have κi = qiVi/4π
for uniform-PV ellipsoids). H is the Hamiltonian of the system, namely the total
energy of the system divided by 4π. Finally, Si is the flow matrix of the locally linear
velocity field at the boundary of the ith ellipsoid: u(x) � u(X i) + Si(x − X i). The
assumption that the velocity field is locally linear is needed to ensure that vortices
remain ellipsoids, i.e. it filters non-ellipsoidal deformations. In practice, Si can be
decomposed as Si = Sv

i + Sb
i where Sv

i is the self-induced part and Sb
i is the part

induced by all other ellipsoids in the flow. The self-induced flow is exactly linear
at the boundary of the ellipsoid (see e.g. Chandrasekar 1969) although this is only
approximately true for the part induced by other ellipsoids. Sv

i is well known and can
be evaluated in terms of elliptic integrals of the second kind (Chandrasekar 1969).

The interaction part Sb
i is computed approximately by modelling each ellipsoid

by a finite sum of singularities. The locations and strengths of the singularities are
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obtained in such a way that the approximate streamfunction deduced from these
singularities (point vortices) matches the exact one at a prescribed order of accuracy
in 1/d , where d is the distance between the vortex centroid and the evaluation point.
For example, using seven point vortices, the error in the streamfunction is only
of O(1/d7). The singularities are used to efficiently compute the interaction energy
and consequently the interaction Hamiltonian Hb. The interaction Hamiltonian Hb

corresponds to the Hamiltonian of a system of point vortices although these point
vortices are not free to move but are attached to the ellipsoids. The flow matrix Sb

is then derived explicitly from Hb. In this study, we use seven singularities to model
the external flow induced by a given ellipsoid. Full details concerning the accuracy of
the model are addressed in Dritschel et al. (2004).

2.3. The steady states

We now present the numerical approach used to compute the steady, equilibrium
states. These are relative equilibria, i.e. with respect to a steadily rotating reference
frame. The method used here is developed from the approach described in Reinaud
et al. (2003), where cases of a single equilibrium ellipsoid in a linear background flow
were investigated. The algorithm aims to solve the nonlinear set of equations

SiBi + BiST
i = 0, i = 1, 2, (2.8)

in the rotating reference frame where dX i/dt = 0. The volume and the mean aspect
ratio of each vortex are prescribed together with the ‘gap’ between the two vortices.
This gap is the horizontal distance between the innermost edges of the vortices. The
vortices are aligned along the x-axis (their centres lie in the y, z-plane). The gap δ

therefore can be expressed in terms of the centroid separation and the coefficients of
the B matrix as

δ = |X1 − X2| −
√

(B1)11 −
√

(B2)11. (2.9)

The gap is used instead of X1 − X2 because the equilibrium states turn out not to be
monotonic in X1 − X2.

We solve this nonlinear problem using a linear iterative method. Starting from a
guess for the equilibrium state (X0

i , B0
i )i=1,2, we first calculate the velocities of the

vortex centroids, in the reference frame anchored at the global centroid xc of the two
vortices, which is the centre of the system rotation:

xc =
κ1X1 + κ2X2

κ1 + κ2

= 0. (2.10)

This provides us with an estimate of the background rotation rate of the system

Ω =
1

2

2∑
i=1

viX
0
i − uiY

0
i(

X0
i

)2
+

(
Y 0

i

)2
, (2.11)

where ui ≡ dX0
i /dt . Then, we calculate the corrections (X ′

i , B′
i) to the centroid

positions X0
i and the matrix coefficients B0

i to reach the equilibrium solution using
an ad hoc equation in the reference frame rotating at Ω:

(
B0

i + B′
i

) (
ST

i +
∂ST

i

∂Xi

X′
i+

∂ST
i

∂X3−i

X′
3−i

)
+

(
Si+

∂Si

∂Xi

X′
i+

∂Si

∂X3−i

X′
3−i

)(
B0

i + B′
i

)
= 0,

(2.12)
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for i =1, 2. In these equations, we do not explicitly take into account the terms
∂S/∂B which appear in the full linearization of (2.8), purely for simplicity (and since
(2.12) works in practice). Note also that since the vortices are taken to be aligned
along the x-axis, no Y ′

i corrections need be considered. Moreover, we impose the
conservation of the height of the vortex by not correcting the coefficient (B)33. To fix
the horizontal gap between the two vortices, we linearize (2.9) giving

X′
i =

(
B0

i

)
11

−
(
X0

i − δ
)2

2
(
X0

i − δ
) − (B′

i)11

2
(
X0

i − δ
) . (2.13)

After dropping the last remaining quadratic terms in (2.12), e.g. terms like

B′
i

∂ST
i

∂Xi

(B′
i)11

2
(
X0

i − δ
) , etc., (2.14)

we obtain a 10 × 10 linear system (for the two B matrices excluding the (B)33
components). This system cannot be inverted however. Two equations are removed
and volume conservation is enforced for each vortex. This is done as above
by linearizing the determinant of (Bi)i=1,2, since det(B) = (3V/4π)2. The iterative
procedure is repeated until the r.m.s. correction in the two shape matrices is less
than a prescribed tolerance, namely 10−12 in this study. The initial guess for the first
member of a given family is two well-separated spheroids (ellipsoids with circular
horizontal cross-sections). This is reasonable since an isolated spheroid is a steady
state. Then, once a steady state is found, the horizontal gap δ is reduced and the
iterative procedure is resumed for the next state. The new first guess for this state
uses the B matrices of the previous state.

2.4. Linear stability analysis

We next describe the scheme used to calculate the linear stability of the equilibrium
states for the two vortices. Let (X̄ i , B̄i)i=1,2 be a steady state, in the relevant rotating
reference frame. Since only the relative position of the two vortices matters, we
describe the state by (�̄, (B̄i)i=1,2) where

� ≡ X1 − X2. (2.15)

We now superimpose a perturbation (�̃, B̃) on the steady state. We aim to find the
first-order equation for the perturbation. The perturbation itself is chosen to have an
exponential dependence on time (the classic eigen form), that is

B = B̄ + B̃ = B̄ + B̂eσ t , (2.16a)

B̂ =


B̂1 B̂2 B̂3

B̂2 B̂4 B̂5

B̂3 B̂5 0


, (2.16b)

� = (
1, 
2, 
3) = �̄ + �̃ = �̄ + �̂eσ t , (2.16c)

�̂ = (
̂1, 
̂2, 0), (2.16d)

where σ = σr + iσi is a complex number; σi represents the frequency of the mode
while σr is the growth rate. Note that both 
̂3 and B̂6 are zero, since 
3 and B6 are
invariant in QG flows. Let S̄i ≡ S(B̄i), and note that the conditions of equilibrium
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require

d�̄

dt
= ḡ − Ω ê3 × �̄ = 0, (2.17a)

S̄iB̄i + B̄iS̄T
i = 0, i = 1, 2, (2.17b)

where g ≡ dX1/dt − dX2/dt , ê3 ≡ (0, 0, 1), and Si ≡ Sb
i + Sv

i − ΩL. Note that
both equations are written in the reference frame that steadily rotates with the two
vortices. The basic evolution equation for the perturbation B̃i , to the first order in
perturbation, is

dBi

dt
=

dB̃i

dt
=

(
SiB̃i + B̃iST

i

)
+

(
2∑

k=1

∂Sb
i

∂
k

̃k +

5∑
k=1

∂
(
Sb

i + Sv
i

)
∂Bk

i

B̃k
i +

5∑
k=1

∂Sb

∂Bk
3−i

B̃k
3−i

)
B̄i

+ B̄i

(
2∑

k=1

∂
(
Sb

i

)T

∂
k

̃k +

5∑
k=1

∂
(
Sb

i + Sv
i

)T

∂Bk
i

B̃k
i +

5∑
k=1

∂
(
Sb

i

)T

∂Bk
3−i

B̃k
3−i

)
,

(2.18)

where the derivatives of S are hereinafter understood to be evaluated at equilibrium.
The linearized equation for the centroid separation is

d
m

dt
=

d
̃m

dt
=

2∑
k=1

∂gm

∂
k

̃k +

5∑
k=1

∂gm

∂Bk
1

B̃k
1 +

5∑
k=1

∂gm

∂Bk
2

B̃k
2 − (−1)mΩ
̃3−m. (2.19)

All the terms appearing in these equations can be explicitly calculated from the
Hamiltonian (cf. Appendix D of Dritschel et al. (2004) where the full expression for
S is provided). Note that ∂Sb

i /∂Bk
i �= 0. This is due to the fact that the local implicit

linearization of the background flow at the boundary of the ellipsoid i depends on
its shape, since Hb depends on both vortices. The above equations result in a 12 × 12
eigenvalue problem. To avoid spurious modes, this is reduced to a 9 × 9 problem by
imposing, to first order in the preturbation amplitude, conservation of volume (of
each vortex) and angular impulse. The linearized constraints on volume give(

B̄4
i B̄

6
i −

(
B̄5

i

)2)
B̃1 + 2

(
B̄5

i B̄
3
i − B̄6

i B̄
2
i

)
B̃2 + 2

(
B̄5

i B̄
2
i − B̄4

i B̄
3
i

)
B̃3

+
(
B̄1

i B̄
6
i − (B̄3

i

)2)
B̃4 + 2

(
B̄2

i B̄
3
i − B̄1

i B̄
5
i

)
B̃5 = 0, i = 1, 2. (2.20a)

The angular impulse J is

J =

∫∫∫
q(x2 + y2)dV, (2.21)

measured in a reference frame anchored at the global centroid of the system of
ellipsoids xc. The contribution of each ellipsoid to the angular impulse is

Ji = 4πκi

(
X2

i + Y 2
i + 1

5

(
B1

i + B4
i

))
. (2.22)

Hence linearized angular impulse conservation implies

2κ1κ2
̄
1
̃1 + 1

5
(κ1 + κ2)

[
κ1

(
B̃1

1 + B̃4
1

)
+ κ2

(
B̃1

2 + B̃4
2

)]
= 0. (2.23)

In practice, we remove the equation for d
̃1/dt and the two equations for
dB̃1

i /dt, i = 1, 2 from the system. Note also that in the derivation of the method we
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δ

V1

V2

h1

h2

r1

r2

�3

Figure 1. Definition of the geometrical parameters describing the initial conditions of a
vortex interaction.

do not explicitly use the fact that the vortices have the same PV. In fact, the approach
is general and the equations established to find equilibrium states and to address
their linear stability are valid for any PV ratio. This is true even for opposite-signed
vortices except in the particular situation where κ1 = q1V1/4π = −q2V2/4π = −κ2. In
this situation, the global centroid of the system (i.e. the centre of rotation) goes to ∞.
The two vortices translate rather than rotate. Then, following the same logic, one has
to determine the relevant translating reference frame rather than the relevant rotating
frame.

3. Numerical results
3.1. Comparison between the ELM and Contour Dynamics

We measure the accuracy of the ellipsoidal approach by comparing the margin of
stability obtained by the ELM with that obtained using the full QG equations. For the
full equations, we use the Contour Dynamics (CD) method which represents vortices
by a set of horizontal contours which are explicitly advected. The velocity field itself
is obtained from the Biot-Savart law re-expressed in terms of contour integrals. The
dynamical method is described in Dritschel (2002) while the algorithms used to find
steady states together with their linear stability are described in Reinaud & Dritschel
(2002).

We first illustrate the results by describing one particular family of steady states.
It corresponds to a couple of vortices with a unit volume ratio ρV = V1/V2 = 1, unit
aspect ratios h1/r1 = h2/r2 = 1, and no vertical offset 
3 = 0. As in Reinaud & Dritschel
(2002), the PV of each vortex is set to 2π and the total volume of PV to 4π/3. The
general geometry of a vortex interaction is illustrated in figure 1.

For this family, we plot the angular impulse J , the energy E and the growth rates
of the modes σr and their frequency σi versus the horizontal gap δ in figure 2. The
ELM results are in good agreement with the results from CD obtained in Reinaud &
Dritschel (2002). First, the angular impulse decreases as the gap decreases before
reaching a minimum J = Jm at a horizontal gap δ = δm and then increases again. On
the other hand, the energy exhibits the opposite trend but reaches its maximum EM

at the same gap δm. In addition, however, according to the linear stability analysis
results, in figure 2(c), δm corresponds to the margin of stability. For δ > δm all modes
are neutrally stable (σr = 0), and all but one propagates (i.e. σi �= 0). The modes
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45

Full system

ELM

E
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27.5

0

ELM

Full system

σ

1.5

0
δ

0.5

Full system

ELM

(a) (b)

(c)

Figure 2. (a) Angular impulse J , (b) energy E, (c) frequencies σi (triangles for ELM, crosses
for CD) and growth rates σr (squares for ELM, pluses for CD) for two unit height-to-width
aspect ratio, unit-volume-ratio, horizontally aligned vortices versus the horizontal gap δ. In (a)
and (b) the solid line corresponds to the ELM results while the dashed line corresponds to the
CD results (adapted from Reinaud & Dritschel 2002).

are organized in pairs (if σ = σr + iσi is an eigenvalue, its conjugate σ = σr − iσi

is also one). There are nine modes available from the ELM eigenvalue problem.
Consequently one has a zero eigenvalue. This particular neutral mode corresponds to
a global rotation of the system.

We see from figure 2(c) that one of the propagating modes (for δ > δm) has a
frequency that collapses to zero more rapidly than the others. On reaching δ = δm its
frequency becomes zero (and remains zero for δ < δm) while its growth rate increases.
Note that again these modes are organized in pairs and an unstable mode σ = σr > 0
means that there exists a stable mode with σ = −σr < 0. There is no surprise in
these observations. They are consistent with what has been obtained in Reinaud &
Dritschel (2002) when solving the full equations – see also Dritschel (1995) and
Meunier et al. (2002) for analogous results in two-dimensional flows. Besides, the
values of the critical angular impulse are in good agreement, with Jm(ELM) = 37.829
while Jm(CD) = 41.366, a difference of 8.55%, while for the energy we have
EM (ELM) = 27.251 and EM (CD) = 26.928, a difference of 1.20%. The critical
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(a) (b)

Figure 3. Shape of the critical steady states for two unit-aspect-ratio, unit-volume-ratio,
horizontally aligned vortices: (a) the exact shape; (b) the ellipsoidal approximation. In this
and subsequent figures, the vortices are viewed orthographically at an angle of 60◦ from the
vertical.

horizontal offset 
1
c agrees within 5.86%. It is therefore arguable that the merger-type

instability observed previously in the full equations is consistent with a pure ellipsoidal
mode, and hence the simplified approach filtering non-ellipsoidal perturbations is able
to give an approximate yet relevant estimate of the critical merger distance in this
situation. The actual shape of the vortices at the margin of stability is shown in figure 3.
It is seen that the exact vortices are asymmetric with sharp innermost edges and
smooth outermost edges. The non-ellipsoidal asymmetry is responsible for the inexact
match between the two approaches.

We continue the comparison by examining the other cases investigated in Reinaud &
Dritschel (2002) having a vertical offset between the vortices (for otherwise identical
parameters, ρV =1, h1/r1 = h2/r2 = 1). Figure 4 presents the dependence of the critical
angular impulse Jm, the critical energy EM , the critical horizontal offset 
1

c and the
critical total distance dc on the relative vertical offset 
3/r , all at the margin of
stability. Overall, there is a good agreement (1% to 10% differences). It is seen that
global tendencies are respected although as far as 
1

c and Jm are concerned, the ELM
results show a small increase of the values for intermediate vertical offsets. Recall that
J is strongly related to 
1. Considering the evolution of the errors, we may say that
Jm and 
1 are in fact less consistent for small vertical offsets. In terms of accuracy,
the results are summarized in figure 5 where the relative differences at the margin
of stability for Jm, EM , 
1

c and dc are plotted versus the relative vertical offset 
3/r

where r is the mean horizontal radius common to both vortices. This shows that the
ELM is able to predict Jm to within 8%, 
1

c to within 5%, and EM to within 1%. As
noted above, the errors are larger for small vertical offsets. We attribute this to the
fact that the full steady states are less ellipsoidal in these cases. Indeed, it can be seen
from the results in Reinaud & Dritschel (2002), in particular in their figure 2, that
the innermost edges are sharper when vortices are horizontally aligned.

3.2. The margin of stability for oblate to moderately prolate vortices

We next present a summary of the ELM results obtained for oblate to moderately
prolate vortices, namely h/r � 1.6. Vortices taller than this are seldom found in
turbulence (Reinaud et al. 2003). We consider 15 values for the aspect ratio of each
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Figure 4. (a) Critical energy EM , (b) critical angular impulse Jm, (c) critical horizontal distance

1

c and (d) the total critical centroid separation dc , versus the relative vertical offset 
3/r for two
equal-volume, unit-aspect-ratio vortices. The dashed lines corresponds to the results obtained
in Reinaud & Dritschel (2002) using the full QG equations, and the solid lines correspond to
the ELM results.

vortex, equally spaced between 0.2 � h/r � 1.6. This is done for various volume
ratios between the two vortices ρV = V1/V2 as well as for various vertical offsets 
3.
Specifically, we consider five volume ratios equally spaced in the range [0.2, 1]. The
vertical offset is taken as a fraction of h1 + h2. This distance corresponds to the
limit above which the two vortices no longer share any common horizontal level.
We consider five different vertical offsets from 0.005(h1 + h2) to 0.8(h1 + h2). More
precisely we use 0.005, 0.2, 0.4, 0.6 and 0.8 as fractions for the vertical offset. For the
nearly aligned case 
3 = 0.005(h1 + h2), we also slightly offset the volume ratios by a
factor 0.993, namely the volume ratios are ρV � 0.1941, 0.3881, 0.5822, 0.7762, and
0.9703, in these cases. This particular setup prevents perfectly symmetric equilibria
and is justified in the next subsection.

We seek to determine the margin of stability in the resulting 5625 situations. As
described in § 2, for given values of the aspect ratios, volume ratio and vertical offset,
we start the investigation with two well-separated spheroids. The initial horizontal
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Figure 5. Percentage difference for the critical energy EM , angular impulse Jm, horizontal
distance 
1

c , and total centroid distance dc between the exact equilibrium vortices and the
approximate ones obtained by the ELM versus the relative vertical offset 
3/r . The vortices
have the same volume (ρV =1) and have unit aspect ratios (h1/r1 = h2/r2 = 1).

centroid separation 
 is set to 2(r1 + r2) where r1 and r2 are respectively the horizontal
radii of the vortices. When a steady state is obtained the horizontal gap δ is reduced
by 2 × 10−4. The procedure is continued until the energy of the state is seen to
decrease (indicating that we have reached the margin of stability assuming the
criterion previously proposed is general). We then perform a linear stability analysis
for four neighbouring states surrounding the observed maximum of energy. A match
between the location δm of the maximum of energy (which always coincides with a
minimum in the angular impulse) and the margin of stability is obtained if the first
state, with δ > δm, is neutrally stable and the last of the four states, with δ < δm, is
linearly unstable. Such a match is observed in all of our converged results.

We present next contour plots summarizing several key properties of the equilibrium
states at the margin of stability. The contours are plotted in the plane (h1/r1, h2/r2)
for all values of the vertical offset 
3 and of the volume ratio ρV considered. Recall
that vortex 2 is the larger one. The raw data consist then of 225 discrete values in
the h1/r1, h2/r2 plane for each value of 
3 and ρV .

Despite many attempts, the margin of stability could not be reached in a few
cases. These critical cases are encountered in a specific region of parameter space
where the vertical offset is small, and when at least one of the vortices has an
aspect ratio close to but greater than unity. In these cases, the algorithm used to
reach equilibrium states becomes unstable and oscillates when one of the vortices
exhibits a nearly circular cross-section in the (x, z)-plane. These difficulties appear to
be associated with a spurious oscillating numerical mode arising from the discrete
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Figure 6. Iso-levels of centroid separation dc between the two vortices at the margin of
stability. The x-axis of each graph corresponds to the aspect ratio of the smaller vortex for
0.2 < h1/r1 < 1.6, while the y-axis corresponds to that of the larger vortex for 0.2<h2/r2 < 1.6.
Graphs along the same row correspond to cases with a fixed vertical offset, with 
3 = 0.8(h1+ h2)
at the top and 
3 = 0.005(h1 + h2) at the bottom. The vertical offset differs by 0.2(h1 + h2) for
two adjacent rows, except for the last two rows, see text for details. Each column of graphs
corresponds to a fixed volume ratio, with ρV = 0.2 at the left and ρV = 1 at the right. The
volume ratio differs by 0.2 between two adjacent columns. The first solid contour is for dc = 2.5,
other solid contours correspond to smaller values while the dashed contours correspond to
larger values. The contour interval is 0.1. The very small symbols 	 mark points where data
are interpolated only.

approximation used to model the external flow induced by the ellipsoids. Increasing
the number of singularities from 4 to 7 to 13 reduces the extent of the spurious
region. However, this numerical mode only affects a small region of parameter space
where one of the vortices exhibits a nearly circular cross-section and the vortices
are horizontally aligned. In these parts of the parameter space, we interpolate the
data from nearby converged states to draw the contour plots. We use a procedure
based on cubic interpolation. The interpolation is done in the h1/r1, h2/r2 plane and
is one-dimensional, i.e. we interpolate ‘horizontally’ (from points with h2/r2 fixed) or
‘vertically’ (from points with h1/r1 fixed). The interpolated data are indicated in the
contour plots by very small triangles.

We first examine the critical centroid separation dc between the two vortices, see
figure 6. We indicate a few general trends that describe the influence of the parameters
(h1/r1, h2/r2, 
3 and ρV ) on the critical merger distance. It is seen first that when
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the smaller vortex is flat (h1/r1 � 1), dc depends only weakly on the aspect ratio of
the larger vortex h2/r2. A similar influence is observed if h2/r2 � 1 but only if the
small vortex is not flat. This trend can be explained in the following way. Our results
indicate that, for a given volume ratio and vertical offset, the shape of the flat vortex
and the strain induced on it (at the margin of stability) depends only weakly on h/r

of the other vortex. Moreover, the eigenvector of the unstable mode at the margin
of stability indicates that this mode acts predominantly on the centroid separation

2 and on the deformation of the flat vortex. These observations indicate that dc is
controlled by the flat vortex.

We also observe (at least in the range of aspect ratios considered) that if the vertical
offset is small, 
3 < 0.4(h1 + h2), dc decreases monotonically with both aspect ratios.
For larger vertical offsets, dc may reach a local minimum. For the largest vertical
offsets investigated and for a moderate volume ratio, we may roughly say that the
extremum is observed when the two vortices have comparable aspect ratios, around 1.
This appears to be a consequence of the ability of vortices with h/r �= 1 to distort and
tilt more easily than spherical vortices. These deformations help bring the innermost
edges of the vortices close enough together to induce instability.

Regarding the influence of the volume ratio on dc, we see that the graphs for
ρV �= 1 are strongly asymmetric with respect to the symmetry line h1/r1 = h2/r2. The
general trend is that the critical distance between a large vortex with h2/r2 = a and
a smaller one with h1/r1 = b < a is larger than that in the complementary situation
consisting of the interaction between a large vortex with h2/r2 = b and a smaller one
with h1/r1 = a. Again, one may put forward geometrical arguments to explain this
trend. A tall vortex can be tilted easily and this allows the centroid of the vortex to
be displaced further away while the innermost edges of the vortices remain close to
one another. Finally, a moderate vertical offset usually increases the critical merger
distance, as was observed in Reinaud & Dritschel (2002).

Meunier et al. (2002), in their study of two-dimensional merger, proposed the idea
that the critical merger distance dc is approximately proportional to a length scale
derived from the angular impulse, namely lJ =

√
J/Γ where Γ is the volume integral

of PV. We have tested this idea in the three-dimensional quasi-geostrophic context
and have not found a significant correlation between dc and lJ over the full parameter
space.

Contour plots for the critical EM energy are given in figure 7. Energy decreases
when the volume ratio increases toward 1. The influence of the vertical offset is
relatively small and tends to weaken the interaction (reduce energy). Also, when the
volume ratio is small, i.e. vortex 2 is much larger than vortex 1, and when vortex
2 is a lens-like vortex (h2/r2 � 1), the energy is almost independent of the aspect
ratio of the first vortex, and of the vertical offset. In this situation the energy of the
flow is principally contained within vortex 2 which feels only weakly the influence
of vortex 1. On the contrary, when vortex 2 is less oblate, the flow is more energetic
and more sensitive to the aspect ratio of the smaller vortex 1. In these situations, the
vortices are closer to each other and the interaction energy is important. We show this
by plotting separately the self-energy of both vortices E1 and E2, and the interaction
energy Eb in figure 8 for the case ρV = 0.2 and 
3 = 0.2(h1+h2). The energy of vortex 2
is roughly an order of magnitude larger than both the energy of vortex 1 and the
interaction energy. The combined influence of vortex 1 and the interaction energy
explains the dependence of the total energy on h1/r1. For h2/r2 � 1, both E1 and
Eb depend more weakly on h1/r1; hence, the total energy is virtually independent of
h1/r1. Note that taller vortices are more energetic because they rotate faster.
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Figure 7. Iso-levels of the energy EM at the margin of stability. The layout is the same as in
figure 6. The first solid contour is for EM = 26, and the contour interval is 0.5.

(a) (b) (c)

Figure 8. Contour plots for the components of the energy at the margin of stability in the
case where ρV = 0.2 and 
3 = 0.2(h1 +h2). (a) Self-energy of vortex 1, E1. The first solid contour
is for E1 = 1.5, and the contour interval is 0.02. (b) Self-energy of vortex 2, E2. The first solid
contour is for E2 = 22.5, and the contour interval is 0.25. (c) Interaction energy Eb . The first
solid contour is for Eb = 3, and the contour interval is 0.08.

This subsection has described in broad terms the margin of stability for interacting
QG vortices. But a major question remains to be answered. It concerns perfectly
horizontally aligned vortices – situations which have been the primary focus of past
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Figure 9. Energy E as a function of the gap δ for ρV = 1.0, h1/r1 = 1.5, h2/r2 = 1.1, and 
3 = 0.
The bold line indicates the branch of symmetric vortices, the thin line to the left indicates the
branch of asymmetric vortices.

reaearch – which, for good reasons, we avoided in this subsection, but which we will
discuss next.

3.3. The tilt instability

We now focus on horizontally aligned vortices, 
3 = 0. In these cases, without any
seed for asymmetry, the equilibrium vortices remain perfectly symmetric with respect
to the (x, y)-plane. Von Hardenberg et al. (2000) and Dritschel (2002) focused on
such perfectly symmetric initial conditions. Since the equations preserve symmetry,
only symmetric perturbations were observed. In these cases, asymmetry can only arise
from the low numerical noise of the solution methods, arguably too small to induce
any noticeable asymmetric behaviour over a moderate integration time. Illustrations
of the resulting symmetric nonlinear interactions are provided in both papers. We
argue that the imposed symmetry can be misleading. Our present stability results
indicate that prolate vortices (h/r > 1) are in fact sensitive to asymmetric modes and,
more than this, these unstable modes occur at greater separation distances than do
the symmetric instabilities.

We consider a first example of two vortices with a volume ratio of unity and aspect
ratios of h1/r1 = 1.5 and h2/r2 = 1.1 respectively. We compute the steady states for
this family, as done in the previous subsection except for a slight difference. Here, the
vertical offset is exactly zero and we enforce explicitly that the vortices are symmetric
with respect to the (x, y)-, (x, z)-, and (y, z)-planes. This is done straightforwardly by
imposing that the two shape matrices remain diagonal. The evolution of the total
energy as a functionof the gap δ is shown as the bold curve in figure 9. Again,
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function of the gap δ for ρV = 1.0, h1/r1 = 1.5, h2/r2 = 1.1, and 
3 = 0.

the energy reaches a maximum as a function of the gap. The growth rates of the
instability modes are presented in figure 10. It is seen that the maximum of energy,
EM =27.44649 at δ = 0.146467, corresponds to the emergence of an instability. But,
clearly the situation differs from the ones discussed previously, since now the local
extremum of energy does not correspond to the margin of stability – a mode of
instability is encountered previously, i.e. at a greater gap. Note that the onsets of both
instabilities are associated with a mode whose frequency collapses to zero.

We now aim to describe the instability occurring before the extremum of energy for
the symmetric vortices. The instability occurs at δ = 0.2424616, well before the gap
corresponding to the extremum of energy. This instability is associated with a new
bifurcation in the set of solutions. There is in fact another branch of solutions arising
from this point corresponding to unstable asymmetric solutions. We have been able to
follow this new branch by introducing a seed for asymmetry on the stable symmetric
state just before the bifurcation – slightly offsetting the centroids in the vertical –
then resuming the algorithm without imposing symmetry. By taking smaller and
smaller vertical offsets, we have verified that this asymmetric branch coincides with
the onset of instability on the symmetric branch. The asymmetric branch obtained
is also unstable. Moreover, the energy of the asymmetric solutions decreases with δ

after this bifurcation, see figure 9. This indicates that, in fact, the margin of stability is
associated with an extrema of energy as thought. The symmetric branch of solutions
is just not the relevant one to follow in this case.
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(a) (b)

(c) (d)

Figure 11. Asymmetric unstable state (case A): the vortices have mean aspect ratios of 1.5
and 1.1. The volume ratio ρV = 1 and the vertical offset 
3 = 0.004(h1 + h2). Times shown are
(a) t = 0, (b) 351, (c) 353, (d) 353. The initial gap is δ = 0.214463.

We next illustrate the instability observed on both branches. We first consider an
asymmetric case, with a gap δ =0.214463, hereinafter referred to as case A. The
growth rate of the unstable mode is σr = 0.106503. The vortex interaction is shown
in figure 11. The equilibrium consists of two vortices tilted toward each other. The
instability itself causes the vortices to tilt further toward each other and eventually
touch (an indication of eventual merger, based on comparisons with CD). We show
the symmetric case for the same gap δ =0.214463 in figure 12, hereinafter referred to
as case B. The growth rate of the unstable mode is higher here than in the previous
case with σr = 0.170874. A similar behaviour is observed. The vortices eventually
tilt toward each other, breaking the symmetry of the initial conditions. The flow is
sensitive to asymmetric perturbations. Note that the way in which the vortices merge
is very similar in the two cases, apart from the orientation, randomly seeded in the
symmetric case by numerical noise. In fact, surprisingly, the dynamical behaviour is
nearly identical. We illustrate this by showing in figure 13 the absolute value of the
tilt angle for vortex 1 in each case The tilt angle is define as the angle between the
major axis of the vortex and the vertical. The two curves almost exactly superimpose
except for a shift in time of �t = 37.25.

Note that, by symmetry, a third branch of asymmetric solutions must exist having
the opposite tilt angle for both vortices. However, this different branch must have
exactly the same properties (E, J ), in other words, the two asymmetric branches
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(a) (b)

(c) (d)

Figure 12. Symmetric unstable state (case B): the vortices have mean aspect ratios of 1.5 and
1.1. The volume ratio ρV = 1 and the vertical offset 
3 = 0. Times shown are (a) t = 0, (b) 310,
(c) 314, (d) 316. The initial gap is δ = 0.214463.

are equivalent. The bifurcation is similar to a pitchfork bifurcation. Analogous
bifurcations with symmetry breaking were observed by Saffman (1992) for two-
dimensional vortices.

As mentioned above, this instability is observed when at least one of the vortices is
prolate. To more clearly illustrate this instability, we consider two taller, horizontally
aligned, equal-volume vortices. The aspect ratio is set to 4. Again, we compute the
family of symmetric states and we identify the first unstable mode. Then we compute
the asymmetric equilibrium branch arising from this bifurcation. The dependence
of the energy E on the gap δ is given in figure 14. Again, the symmetric branch
of solutions exhibits a maximum of energy EM = 27.45644 at δ = δm = 0.162387. Yet
again, the equilibria are unstable before δm. The first mode of instability is found
at δ = 1.12761, and an unstable asymmetric branch of solutions bifurcates at this
point. For this new branch, the energy decreases as the gap decreases, indicating
that the margin of stability coincides with the maximum of energy (we can trace
back the complete asymmetric branch for distant vortices and it is seen to follow
the symmetric branch until it bifurcates at the margin of stability). We next illustrate
unstable interactions on both branches of solutions. First, figure 15 shows one of
the asymmetric branches. The initial gap is δ = 1.01758 and the growth rate of
the unstable mode is σr =0.100125. As before the two vortices tilt toward each
other before touching (which corresponds to merger in the full equations, as verified
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(a) (b)

(c) (d)

Figure 15. Asymmetric unstable state: the vortices have mean aspect ratios of 4.0. The volume
ratio ρV = 1 and the vertical offset 
3 = 0.002(h1 + h2). Times shown are (a) t = 0, (b) 305,
(c) 307, (d) 309. The initial gap is δ = 1.01758.

below). A similar scenario is reproduced for the symmetric case in figure 16. Here
the initial gap is δ =1.01773 and the growth rate of the unstable mode is σr =
0.100516.

These instabilities are not restricted to the ellipsoidal model, but are also observed
in the full equations. We have used two simple initial configurations. In the first, we
start with two spheroids, as in Dritschel (2002), with an initial horizontal offset of

1/r = 4.38. According to the results in Dritschel (2002), the vortices are too far apart
to experience a classical merger. The critical distance for classical merger is 
1/r = 4.0
in that case. Unlike in Dritschel (2002) we initiate the tilt instability by tilting each
vortex toward the other by 1◦. Each vortex is discretized by 80 horizontal layers.
The PV is set to 4π, the time step is �t = 0.025, the dimensionless node separation
is µ = 0.075 and the large-scale length is 0.25, corresponding to the diameter of the
vortices (see Dritschel 2002 for details of the contour dynamical (CD) numerical
method). The evolution of the flow is shown in figure 17. The vortices first experience
high-frequency wobbling together with lower frequency, quasi-periodic deformations.
The latter deformations, not shown, correspond to a change of shape from a nearly
perfect ellipsoidal shape to a crescent shape. Meanwhile, the vortices start to tilt.
The tilt grows exponentially and by the time it becomes noticeable, the two vortices
are collapsing into each other rapidly and the low-frequency deformations mentioned
above become unimportant. The vortices then merge and intertwine progressively.
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(a) (b)

(c) (d)

Figure 16. Symmetric unstable state: the vortices have mean aspect ratios of 4.0. The volume
ratio ρV = 1 and the vertical offset 
3 = 0. Times shown are (a) t =0, (b) 312, (c) 314, (d) 316.
The initial gap is δ = 1.01773.

Finally the upper parts of the vortices detach and form two conically shaped satellite
vortices.

In the second case, we use the marginally unstable symmetric ellipsoids, obtained
using the ELM, as initial conditions. We perturb the vortices using the unstable tilting
mode from the ELM stability results. The initial horizontal offset is 
1/r =4.31. The
amplitude of the mode is set to 0.01. Again, the PV is set to 4π, and the time step
is �t =0.025 in the CD simulation. The dimensionless node separation is set to 0.08
and the large-scale length is set to the mean horizontal diameter of the vortices,
here 0.25. Each vortex is now discretized by 100 horizontal layers. The evolution
of the flow is shown in figure 18. The non-ellipsoidal low-frequency deformations
mentioned above are again encountered here while the fast wobbling motion has
virtually disappeared as a consequence of the near-equilibrium initial conditions.
The quasi-periodic deformation from ellipsoidal to crescent shape is shown in the
first three frames. The tilting motion then becomes evident and the vortices rapidly
collapse into each other. Note that when the vortices are close enough they deform
each other in a similar way to that observed in classical merger (frame d). However
the tilting results in merger well away from the vortex mid-sections (above in this case
because of the initial perturbation). And, as in the previous case, two small conically
shaped vortices detach from the helically intertwining filaments stretching from the
merged vortex.
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(a) (b) (c)

(d) (e) ( f )

Figure 17. A contour dynamical simulation of the tilt instability. The times shown are
(a) t = 0, (b) 60, (c) 64.6, (d) 65.6, (e) 67.6, and ( f ) 76.8. The vortices have equal volume, equal
PV and an aspect ratio of 4. The initial condition consists of two spheroids with a horizontal
offset 
1/r = 4.38. The vortices are tilted toward one each other by 1◦. The view is orthographic
at an angle of 70◦ from the vertical. In the first row of images, the vortices are viewed in a
reference frame rotating with the vortices.

4. Conclusions
In this study, we have investigated the critical merger distance for oblate to

moderately prolate vortices. We have considered a large parameter space spanned by
the aspect ratio of each vortex, the volume ratio and the vertical offset between the two
vortices. This study was enabled by the development of an accurate asymptotic model
(ELM) which models vortices by ellipsoids. High-order, non-ellipsoidal deformations
are disregarded in this model, but even so, this model is found to be in good agreement
with the full QG equations in the prediction of the critical merger distance between
two vortices.

To quantify the dependence of the critical merger distance on all of the parameters,
we first found families of steadily rotating vortices parameterized by the horizontal
gap between the vortices. Then, their linear stability was calculated. It was first
shown that for oblate to moderately prolate vortices (h/r � 1.6), the margin of
stability coincides with an extremum in both the energy and the angular impulse. The
instability itself is an exchange-type instability. This observation is in agreement with
previous studies both in two dimensions (Dritschel 1995 and Meunier et al. 2002) and
in three dimensions over a much smaller parameter space (Reinaud & Dritschel 2002).
A variety of important properties of the marginal states were then described – in
particular the critical separation distance. A few general trends were pointed out, but
we have been unable to find any simplifying relations applicable, even approximately,
over the entire parameter space. Nonetheless, the results presented (and the database
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Figure 18. A contour dynamical simulation of the tilt instability. The times shown are
(a) t = 38, (b) 42.5, (c) 48, (d) 52.5, (e) 53.75, and ( f ) 63.75. The vortices have equal volume,
equal PV and an aspect ratio of 4. The initial condition consists of two marginal unstable
ellipsoidal vortices. The view is orthographic at an angle of 70◦ from the vertical. In the first
row of images, the vortices are viewed in a reference frame rotating with the vortices.

from which they were extracted) give the first comprehensive picture of the conditions
for the merger of two vortices in QG flows.

This investigation also led to the discovery of a new ‘tilt’ instability that results
in the merger of prolate vortices from greater separation distances than the classical
symmetric merger instability. The new tilt instability and the existence of asymmetric
solutions, even for horizontally aligned vortices, significantly widens the range of
known vortex interactions. The tilt instability is indeed the first instability able to
precipitate the merger of prolate vortices.

This instability appears to be related to a similar instability observed for tall
columns of PV between two free-slip (or isothermal) vertical boundaries in Dritschel
& de la Torre Juárez (1996), but it had never been observed for ellipsoids in an
unbounded fluid. Indeed previous studies concluded that in these configurations
the vortices were stable – or at least too far apart to merge. The present study
demonstrates that vortices may in fact merge as a consequence of tilting toward each
other.

Miyazaki et al. (1999) studied the stability of tilted isolated spheroidal vortices. The
authors conclude that oblate vortices can be intrinsically unstable (for h/r < 0.62).
However, it seems unlikely that this instability has a strong effect on the stability
of interacting vortices. Each vortex of the interacting pair is subject to an external
straining flow that strongly influences its stability. The problem of strongly interacting
vortices is evidently distinct from the problem of isolated vortices. The latter is of
interest in its own right as it can be regarded as a model of vortex behaviour in dilute
turbulence.
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An obvious next step in this research is to consider the dependence on the PV ratios
between the vortices and perhaps the distribution of PV within them (considered
uniform in the present study). Undoubtably, other new kinds of instability are likely
to be discovered, challenging our current understanding of vortex interactions.

Support for this work has come from the UK Enegineering and Physical Sciences
Research Council.
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